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Supplementary Materials: 
 

Supplementary,Methods,
MELD + CPI overview 
MELD (Modeling Employing Limited Data), which is a method for integrative structural 
biology(1), is the heart of our computational engine.   Briefly, MELD incorporates semi-
reliable experimental information (sparse, ambiguous and unreliable data) into a physics 
based (molecular dynamics) engine.  In MELD, protein structures are inferred by 
combining the physical and experimental aspects using a Bayesian formulation: 
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where x represents structures, D represents experimental data, p(x|D) is the probability of 
the structure given the data, p(D|x) is the likelihood of the data given the structure, p(x) is 
the probability distribution of structures from the atomistic force field model and p(D) is 
an irrelevant normalization factor here. Restraints are used to incorporate the data into 
simulations. 
 
Our significant departure here is that we can harness much `weaker information' than the 
`strong information' that is usually available from experiments.  Here, we use coarse 
physical insights (CPI) are used instead of experimental data. These insights come from 
our general knowledge of protein structure and they are chosen so that they have a 
parallelism with the data used in MELD: (1) CPIs are uncertain – we know much of the 
information they give are false positives, (2) the set of true positive CPIs is sparse – there 
is little amount of information guiding towards native structures and (3) CPIs are 
ambiguous – there are many conformations that could satisfy them. 
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MELD,Workflow,

Here is an overview of MELD; details are given elsewhere (1). MELD generates a 
Boltzmann-distributed ensemble from a physical force field and from external 
information: 

Etotal = Ephysics + Einformation.        (1) 

MELD turns the external information into collective, multi-body restraints called 
collections, which provide a mechanism to deal with unreliable information. For each 
collection, the user specifies the active fraction, telling MELD how many informational 
restraints must be satisfied. The active fraction represents how much MELD should “trust” 
the external information. During each time step, MELD enforces the restraints that have 
the lowest energy and ignores the rest, driving the system towards the nearest basin 
compatible with that subset of restraints (See Fig. 1). 

All restraints are always present in the simulations, but we only enforce the preset 
percentage corresponding to the lowest energy restraints for the current structure (for 
each collection). The set of restraints enforced is updated every time step. Note that for 
each conformation there is a unique set of restraints enforced: the ones resulting in the 
lowest restraints energy (since they are independent, this is achieved by calculating all 
restraint energies, sorting them and choosing the fraction with the lowest energy). But the 
relationship between springs to structures is not unique: large regions of conformational 
space can map on to the same set of enforced restraints. Thus, the restraints funnel whole 
regions of conformational space into narrower regions where restraints are satisfied. 
There are different such regions depending on what restraints are enforced (see Fig. 1). 
This procedure can be framed in Bayesian terms(1). 

The H,T-REMD procedure is key to how the restraints affect the simulation. At high 
replica index we impose weak force constants to the restraints (vanishing at the highest 
replica index) and run simulations at high temperature. Under these conditions many 
restraints are unsatisfied (e.g. very stretched springs in the case of a distance restraint) 
with almost no energetic penalty, so the ensembles explored in these conditions are broad 
and it is very easy to go from a conformation that has one set of low energy springs to 
another conformation where the set of lowest energy springs is different (see Fig. 1). 
Conversely, at low replica index, restraint force constants are high and temperatures low. 
In these conditions most of the restraints are satisfied and the ensembles are tight and it 
will be difficult to sample conformations where the set of restraints enforced is different 
than for the current structure. Exchanging between different replicas is accomplished 
using a standard metropolis Monte Carlo scheme. Accordingly, only conformations that 
have a low global energy (low restraint energy and low force field energy) will make it 
down to the lowest replicas. Thus, many conformations where the force field is not 
compatible with the restraints will never be sampled at low temperatures. 

In essence the ladder acts in a way that resembles a simulated annealing run in 
NMR-based structure determination. But, there are significant differences. In solution 
NMR, a large number of correct restraints pull the structure towards a unique basin. In 
MELD+CPI the number of enforced restraints is much more sparse and ambiguous 
(different enforced springs), translating into many different topologies that are 
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compatible with the restraints. Hence, simulating annealing would give many possible 
topologies and would be unable to identify the correct one. Our REMD ladder gives proper 
populations that obey detailed balance, which provides the principle for selecting the 
correct conformation. 

 
Our method is freely available to download from github.  It contains two parts and 

requires the freely available OpenMM package: https://github.com/maccallumlab/meld-
openmm-plugin.git and https://github.com/maccallumlab/meld.git. 

Populations,from,MELD,are,representative,of,the,underlying,force,field,

As a last step, we select structures by clustering populations. H,T- REMD produces 
Boltzmann ensembles for each replica. We cluster the lowest temperature replicas and 
select representative structures from the five most populous clusters (see SI Methods). 
The population of each cluster is directly related to the free energy; selecting by cluster 
population is equivalent to selecting by free energy. 

The restraints serve to sculpt the energy surface providing localized funneling. 
Effectively, the simulations are sampling from the following potential function, 

  

, = ,-./01-2134 + ,678920:3%;<92=7>;
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 (4) 

The restraints are defined so as to always contribute ,678920:3%;<92=7> ≥ 0.  In 
regions of conformational space that satisfy the restraints, the restraint energy is zero and 
the potential function is only that of the forcefield itself.  Given H, we can compute the 
relative populations of the regions that are compatible with our insights at the lowest 
temperature replica:  
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On the one hand, imposing the restraints speeds up and focuses the sampling.  On 
the other hand, for structures compatible with the restraints (i.e., that have zero restraint 
energy) our method of imposing the restraints does not perturb the ratio of populations 
that would be given by the force field alone. In the limit of converged sampling and 
perfect force field accuracy, if the original springs contain a subset compatible with the 
native state, running either MELD+CPI or unrestrained MD will yield the same lowest free 
energy structure, but MELD+CPI will find this structure much faster. 
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Source,of,restraints:,MELD+COARSE,PHYSICAL,INSIGHTS,(MELD+CPI),,

For the MELD+CPI workflow the restraints are automatically generated based on 
the protein sequence and its predicted secondary structure (psipred (2), porter (3)). 
Different collections are specified according to general rules of thumb (see Kinds of 
Physical Insights below). Each collection has its own accuracy parameter (fH) 
determining how many restraints each collection should be enforced at any time.  Most of 
the restraints in these collections are expected to be wrong, but a fraction of them (at least 
fH) are expected to be satisfied in the native state. The success of MELD+CPI is in the 
systematic derivation of restraints based on a sequence and a set of general insights. 

Instead of enforcing all the restraints in the simulation at the same time, the MELD 
framework is able to produce structures that are both compatible with the force field and 
a fraction of the restraints. Example scripts are available from 
https://github.com/laufercenter/MeldExamples.git. 

Types,of,physical,insights,used,for,structure,prediction,
 1. Secondary structure predictions 

  We obtain secondary structure predictions from PsiPred (2) or Porter (3). We 
turn these secondary structure predictions into a set of geometric restraints (see (1)). 
Since we know from prior study that secondary structure predictions are typically about 
80 percent accurate, we set our active-fraction criterion for the secondary structure 
restraints to 0.8—meaning that once 80 percent of the secondary structure restraints are 
satisfied, the rest are ignored.  

These tools create multiple sequence alignments (MSA) based on the sequence 
and then use short residue windows inside a neural network to assign secondary structure 
preferences. In this way, they do not use structural homology. 

2. Strand pairing 

We add long-ranged restraints that drive the system to favor hydrogen bonds 
between β-strands. We add springs that enforce all possible hydrogen bonds between 
residues in server-predicted strands. The active fraction is set so that 0.65Nβ restraints are 
satisfied, where Nβ is the number of residues in predicted β-strands.  The factor 0.65 
comes from our prior statistical analysis of small globular proteins in the PDB. The 
restraints are enforced between N and O atoms in the pairing residues (see eq. 7). 

W =
%%%%%%%%%%%%0%%%%%%%%%%%%%%%%%YZ%(C ≤ 3Å)

%%%%%%%%%%%%%^ C − 3 `%%%%%%%YZ%(3 < C ≤ 4Å)
^ 2C − 7 %%%%%%%%YZ%(4 < C)

     (7) 

 Where k=250kJ/(mol•nm2) and r is the distance between N—O atoms in the current 
structure. These kind of functional restraints are typical in MD packages(4). Here the 
heuristic imposes that if the candidate N and O atoms are closer than 3Å there is no 
restraint, beyond that and until 4Å the restraint energy increases quadratically and 
linearly beyond 4Å. 

3. Hydrophobic contacts 
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Third, we add long-range restraints between all possible pairings of hydrophobic 
amino acids. We set the active fraction to 0.08Npairs, where Npairs is the number of pairs of 
hydrophobic residues and the factor 0.08 comes from a prior statistical analysis of small 
globular proteins in the PDB. The way we introduce each restraint is as a flat bottom 
harmonic potential between the Cβ of the two residues (see eq. 8). Where the 
hydrophobic residues are Alanine, Valine, Leucine, Isoleucine, Phenylalanine, 
Tryptophan, Methionine and Proline. Note that the distances between Cβ pairs that we 
impose are large enough to allow side chain rearrangement without incurring a restraint 
penalty.  

 W =
%%%%%%%%%%%%0%%%%%%%%%%%%%%%%%YZ%(C ≤ 9Å)

%%%%%%%%%%%%%^ C − 9 `%%%%%%%YZ%(9 < C ≤ 11Å)
2^ 2C − 20 %%%%%%%%YZ%(11 < C)

    (8) 

 Where k=250kJ/(mol•nm2) and r is the distance between a specific pair of Cβ atoms in 
the current structure.  The heuristic imposes no restraint penalty if the selected pair of Cβ 
atoms is closer than 9Å (allowing plenty of freedom for side chains to reorient). The 
restraint energy increases quadratically beyond that until 11Å and linearly after that. 

4.,Loose,enforcement,of,compactness,

Folded proteins are compact.  We enforce this loosely.  In this term, we enforce 
that all residues should be inside a sphere with radius R chosen as follows:  

g = (16.9 ∗ kl(m) − 15.8)/2        (9) 
where R is the radius (in Å) of the confinement sphere and N is the number of 

residues in the protein.  This compactness insight on its own is not very restrictive, but 
when combined with the hydrophobic and strand pairing it enhances high-contact-order 
interactions. We derived this functional form based on a set of small proteins. 

5.,Disulfide,bridges,

For three proteins, we tried a parallel experiment: one in which we enforce the 
native disulfide bonds and one in which they are not.  But, first there is a force field issue: 
molecular mechanics simulations cannot spontaneously change between 
oxidized/reduced cysteines. This means that even bringing two residues that should be 
disulfide bridged together would be hard in the wrong state due to steric clashes, non 
bonded interactions. The presence of these disulfide bonds can be detected 
experimentally (e.g. by mass spectroscopy). We ran simulations on three proteins both in 
the reduced and oxidized states and have seen very significant differences, especially in 
population distributions. Hence, such restraints can significantly enhance predictions of 
native structures, when they are known.  

6.,Our,physical,insights,have,not,been,optimized,
 In this paper we have described some insights we derived for folding globular 
proteins, but they can be used for a variety of phenomena. They have not been 
completely optimized. However, what is important is that they reduce the size of the 
conformational space enough for the simulations to find the native state relatively 
efficiently. In principle, many more physical insights could we added. However, since the 
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evaluation of all the restraints has to be done at each timestep, at some point the method 
will become impossibly slow. Hence, it is important that the insights that are added have 
a signal/noise ratio that make them directive enough to compensate the computational 
overhead. 

Simulation,Details,,

Molecular,Dynamics,

We model the proteins in full atomistic detail, combined with the implicit-
solvation model of Onufriev, Bashford, and Case (5).  For the protein interactions, we 
used an in-house modified version (to be published separately) of the AMBER12SB force 
field (4) that adds a CMAP-like (6) correction to reproduce the balance between α and β 
regions of the Ramachandran plot (accessible through the git repository). All our 
simulations are 500 ns long (per-replica) unless otherwise noted. Initial conformations are 
fully extended as generated by the tleap (4) sequence command.  We use the OpenMM 
suite of programs (7) with a 2 femtosecond (fs) time step and Langevin dynamics. 

Replica,Exchange,Molecular,Dynamics,

For efficient conformational sampling, we use a Hamiltonian and temperature 
Replica Exchange Molecular Dynamics (H,T-REMD) sampling approach with 30 replicas. 
The temperature ranges from 300K in the lowest replica to 450K in the highest, 
increasing geometrically. The heuristic restraints weaken at higher temperatures. At low 
replica index force constants are strong (250 kJ/ mol/nm2) and at high replica index, they 
are zero, changing exponentially from the lowest to highest replica. 
 

Clustering,into,representative,structures,,
At the ends of each simulation, we collect together the most similar structures into 

clusters, as is commonly done in structure predictions.  We have used average-linkage 
clustering (8, 9) with an ε value of two, which is standard (10, 11). As input for the 
clustering, we took the five lowest-temperature replicas.  The accuracy of clustering is 
tested by computing the RMSD of the centroid to the native state. To avoid situations of 
loops and termini disrupting the clusters, the clustering is done on the Cα carbons of 
residues having predicted secondary structures. For the comparison with the native state 
we consider the Cα of all residues excluding flexible termini, as is standard in the field. 
Table S1 contains a description of the residues used for each protein. We arbitrarily 
define a threshold in which structures closer to native than 4 Å are regarded as being 
within the native basin. 

Effects of disulfide bridges 

For three proteins, we ran simulations with and without disulfide bonds enforced. 
We were able to sample and identify the native state for only one of them in the absence 
of disulfide bonds (1ery, see table S4). Adding the disulfide-bridge information 
significantly reduces the size of the protein’s conformational landscape, allowing us to 
identify native-like states in two cases (the third one is just slightly over our 4Å 
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threshold, see Table S4). Disulfide bridges can be routinely determined through mass 
spectroscopy(12). 

 

 In this work we enforced 80% of secondary structure predictions. When analyzing 
the last 250 ns of simulation at low temperatures, we found that we were satisfying 88% 
of the secondary structure predictions (averaging over the 20 proteins). The lowest 
individual average was 73% and the highest 96%.  This results because secondary 
structures first need to nucleate before they propagate. For these small proteins, 80% of 
the sse probably included most of the nucleation points in the secondary structures, and 
the cost of extending the sse was not much. Hence, the overall percentage that is satisfied 
is higher than expected. 
 Indeed, when analyzing the agreement between predictions and native in our 
dataset we found that 90% (minimum in the protein set is 58%) of the native sse is 
present in the prediction, while 95% (minimum in the protein set is 78%) of the predicted 
sse are present in the native. This numbers are higher than what we expected and 
probably one of the reasons for our success while using 80%.  

,
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Supplementary Tables 

  
  

PDBid number of 
residues 

residues for 
rmsd 

protein name 

1bdd 60 9 to 57 B domain of staphylococcal protein A 
1dv0 47 3 to 42 C-terminal UBA domain of HHR23A 
1ery 39 1 to 34 Pheromone ER-11 
1fex 59 6 to 59 MYB-domain of human RAP1 
1gh1 90 1 to 74 wheat nonspecific lipid transfer protein 
1hp8 68 1 to 68 human P8-MTCP1, 
1pou 71 1 to 71 OCT-1 POU-specific domain 
1ubq 77 1 to 72 structure of ubiquitin 
2a3d 73 1 to 73* De novo designed three-helix bundle 

protein. 
3gb1 56 1 to 56 B1 domain of streptococcal protein G 
1mi0 65 9 to 65* redesigned protein G variant NuG2 
1fme 28 4 to 26* structure of FSD-EY, 
1lmb 92 6 to 85* lambda repressor-operator complex 
1prb 53 8 to 50* Albumin-binding domain 
2f21 38 10 to 32* WW domain 
2f4k 35 2 to 31* Villin subdomain HP-35 
2hba 52 1 to 52* N-terminal Domain of Ribosomal Protein 

L9 
2jof 20 3 to 18* Trp-cage 
2p6j 52 5 to 48* Designed engrailed homeodomain 

variant UVF 
2wxc 47 9 to 27, 

35 to 46* 
BBL 

    
Table S1: Proteins used in this work.  * denotes values taken from reference(13) 
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Protein Residues 

RMSD 
C1 C2 C3 C4 C5 FPT 

(ns) 
BRMSD 

(Å) 
2jof 1-20 1.2 4.2 5.1 4.2 3.0 0.2 0.6 
2f4k 1-35 1.5 5.8 6.2 6.8 7.5 1 0.7 
1dv0 3-42 1.0 6.3 4.3 3.8 4.8 1 0.9 
1bdd 9-57 2.5 2.9 3.2 4.6 3.1 13 1.4 
3gb1 1-56 7.9 3.6 3.4 6.7 9.7 10 1.4 
1prb 7-53 2.5 8.7 3.8 8.8 10.9 3 1.4 
2p6j 5-49 2.7 9.1 4.2 5.2 5.6 6 1.7 
1mi0 8-65 3.3 5.8 4.5 5.1 5.3 29 1.8 
2f21 1-38 3.6 5.0 9.9 11.0 6.7 25 1.8 
1ery* 1-34 2.8 6.9 6.6 3.9 2.1 1 2.0 
1gh1* 1-74 4.4 2.7 3.0 5.4 3.9 6 2.0 
1fme 1-28 7.7 7.5 7.1 4.5 3.4 0.4 2.0 
2a3d 1-73 2.9 4.9 5.9 6.2 6.0 8 2.1 
1ubq 1-72 4.0 6.6 5.4 5.3 7.6 58 3.0 
1fex 6-59 8.6 4.9 6.3 3.5 8.8 21 3.2 
2hba 1-52 7.8 9.8 9.8 8.2 10.2 61 0.9 
2wxc 8-47 9.7 5.5 9.2 7.6 5.4 28 2.2 
1pou 1-71 8.9 10.7 8.9 13.2 10.3 205 2.9 
1hp8* 1-68 4.5 5.5 4.9 4.3 6.3 57 3.2 
1lmb 8-92 9.2 12.2 9.9 12.1 10.8 57 3.6 
Table S2:  RMSD table between identified clusters and native. Best free energy RMSD in 
bold (best top 5 cluster: C1-5). The structures are sorted according to best ensemble rmsd 
(BRMSD). A line separates the structures that have not been identified through 
clustering. Here, only residues in flexible termini are excluded from the RMSD 
calculation. FPT: first passage time. * refers to proteins for which disulfide bridges were 
also included. 
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SSE HC (8%) SP C1 C2 C3 C4 C5 Best FPT (ns) 
yes no no 11.9 8.7 10.0 10.9 10.7 3.2 447 
no yes yes 10.8 11.6 12.1 11.0 11.0 8.2 - 
yes yes no 11.2 13.4 10.8 10.0 10.8 4.9 - 
yes no yes 6.3 11.7 10.2 11.2 6.8 3.7 366 
yes yes yes 4.0 6.6 5.4 5.3 7.6 3.0 58 
yes Yes, 18% yes 8.8 4.8 9.3 10.7 11.1 2.4 129 

  
Table S3. Effect of restraints on Ubiquitin folding. SSE: secondary structure heuristic, 
HC: hydrophobic contact heuristic, SP: strand pairing heuristic, C1-C5: top 1 to 5 clusters 
rmsd; Best: rmsd of the best sampled structure, First Passage time (FPT): first time 
structure under 4Å is detected in the simulations. 

  



  28 April 2015 
 
 

 
  

  with disulfides without disulfides 
PDB Top5-RMSD Best-

RMSD 
Top5-

RMSD 
Best-

RMSD 
1ery 2.1 2.0 3.8 2.1 
1gh1 2.7 2.0 9.3 5.5 
1hp8 4.3 3.2 7.3 3.6 

  
Table S4: Including correct disulfide bond information improves structures. 
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pdb 
id 

Number 
of 
residues 

C1 C2 C3 C4 C5 Best-RMSD 

1i6z 136 17.7 11.1 8.5 15.0 10.0 6.0 
1lpe 145 22.2 16.5 8.9 20.4 12.7 8.5 
1lre 82 10.6 10.6 11.1 8.3 9.6 3.6 

  
Table S5: Results for non-globular proteins. HC: hydrophobic contact heuristic, 

SP: strand pairing heuristic, C1-C5: top 1 to 5 clusters RMSD; BRMSD: RMSD of the 
best-sampled structure. 
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Supplementary Figures 

   
Figure S1: Not all simulations are converged. Each panel is for one of our 20 targets. 
The lines show 30 RMSD histograms, one for each “walker” in the REMD simulation 
(covering all replica conditions). The RMSDs are relative to the last frame of the 
simulation (this quality analysis does not require native structures). Converged 
simulations would give overlapping histograms. Some simulations (e.g. 1fme, 2jof) 
appear to be nearly converged, while others (e.g. 1hp8, 1pou) are not. 
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Figure S2: Multiple independent folding trajectories. Each panel is for one of the 20 
target proteins. The lines show 30 RMSD histograms, one for each “walker” in the 
REMD simulation as they go up and down the replica exchange ladder. The RMSDs are 
relative to native (hence this analysis cannot be used to check for convergence in the way 
that figure S5 can). The graphic shows the number of replicas (X) that have folded 
(RMSD<4Å) out of the 30 possible (X / Y). 
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Figure S3: Unstable proteins with current force field. RMSD of the lowest 
temperature replica in H,T-REMD starting from native for five targets that we could not 
identify through clustering. The figure shows four of these proteins unfolding and one 
remaining stable (2hba). The blue line denotes the 4Å criteria for native basins. 
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Figure S4. 2HBA requires longer simulation time.  RMSD of the lowest temperature 
replica in an 850 ns MELD+CPI simulation of 2hba starting from extended. Population of 
native like structures significantly goes up after ~450ns, hinting at a convergence issue. 
The blue line denotes the 4Å criteria for native basins. 
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Figure S5. Flory-Huggins theory. A: For three proteins (protein G, 2HBA and 
ubiquitin) simulations were performed with different amounts of heuristic restraints. The 
plot shows the increase in performance with the normalized ratio of the number of 
springs and protein size. B: Comparison of increased performance with number of 
springs as explained with the Flory-Huggins theory. The dataset are the proteins that 
overlap between the current study and that of reference(13). 

 
  

   

Figure S6. Representative MELD+CPI pathways in ubiquitin folding. On the bottom 
left we start from a fully extended conformation and in the bottom right we have the 
folded state. These are the highest flux pathways going from extended into the native 
state. 
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